
UCRL-CONF-220714

Design and Implementation of
Ceph: A Scalable Distributed File
System

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E.
Long, C. Maltzahn

April 20, 2006

Symposium on Operation Systems Design and Implementation
Seattle, WA, United States
November 6, 2006 through November 8, 2006

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Design and Implementation of Ceph: A Scalable Distributed File System

Sage A. Weil Scott A. Brandt Ethan L. Miller Darrell D. E. Long
Carlos Maltzahn

Abstract
File system designers continue to look to new architec-
tures to improve scalability. Object-based storage di-
verges from server-based (e. g. NFS) and SAN-based
storage systems by coupling processors and memory
with disk drives, delegating low-level allocation to object
storage devices (OSDs) and decoupling I/O (read/write)
from metadata (file open/close) operations. Even re-
cent object-based systems inherit decades-old architec-
tural choices going back to early UNIX file systems, how-
ever, limiting their ability to effectively scale to hundreds
of petabytes.

We present Ceph, a distributed file system that pro-
vides excellent performance and reliability with unprece-
dented scalability. Ceph maximizes the separation be-
tween data and metadata management by replacing al-
location tables with a pseudo-random data distribution
function (CRUSH) designed for heterogeneous and dy-
namic clusters of unreliable OSDs. We leverage OSD
intelligence to distribute data replication, failure detec-
tion and recovery with semi-autonomous OSDs running
a specialized local object storage file system (EBOFS).
Finally, Ceph is built around a dynamic distributed meta-
data management cluster that provides extremely effi-
cient metadata management that seamlessly adapts to a
wide range of general purpose and scientific computing
file system workloads.

We present performance measurements under a vari-
ety of workloads that show superior I/O performance and
scalable metadata management (more than a quarter mil-
lion metadata ops/sec).

1 Introduction

System designers have long sought to improve the per-
formance of file systems, which have proved critical to
the overall performance of an exceedingly broad class of
applications. The scientific and high-performance com-

puting communities in particular have driven advances
in the performance and scalability of distributed stor-
age systems, typically predicting more general purpose
needs by a few years. Traditional solutions, exemplified
by NFS [20], provide a straightforward model in which
a server exports a file system hierarchy that clients can
map into their local name space. Although widely used,
the centralization inherent in the client/server model has
proven a significant obstacle to scalable performance.

More recent distributed file systems have adopted ar-
chitectures based on object-based storage, in which con-
ventional hard disks are replaced with intelligent object
storage devices (OSDs) which combine a CPU, network
interface, and local cache with an underlying disk or
RAID [25, 34, 9, 8, 37]. OSDs replace the traditional
block-level interface with one in which clients can read
or write byte ranges to much larger (and often variably
sized) named objects, distributing low-level block allo-
cation decisions to the devices themselves. Clients typ-
ically interact with a metadata server (MDS) to perform
metadata operations (open, rename, etc.), while commu-
nicating directly with OSDs to perform file I/O (reads
and writes), significantly improving overall scalability.

Existing systems adopting this model have continued
to suffer from scalability limitations due to limited (or
no) distribution of the metadata workload. Continued
reliance on traditional file system principles like alloca-
tion lists and inode tables and a reluctance to delegate
intelligence to the OSD have further limited scalability,
performance, and increased the cost of reliability. We
present Ceph, a distributed file system that provides both
excellent performance and reliability with unparalleled
scalability. Our architecture is based on the assumption
that file systems at the peta- and exabyte scale are inher-
ently dynamic: large systems are inevitably built incre-
mentally, node failures are the norm rather than the ex-
ception, and the quality and character of workloads are
constantly shifting over time.

Ceph seeks to decouple metadata from data operations

1

Metadata
storage

File I/O

Metadata Cluster

Object Storage Cluster

clientbash

Linux kernel
fusevfs

libfusels

…

clientbash

Linux kernel
fusevfs

libfusels

…

myproc
client

myproc
client

Clients
Metadata operations

Figure 1: System architecture. Clients perform file I/O
by communicating directly with OSDs. Each process can
either link directly to a client instance, or interact with
a mounted filesystem and share a client with other pro-
cesses on the host.

by fully eliminating file allocation tables and replacing
them with object name and distribution generating func-
tions. This allows us to leverage the intelligence present
in our OSDs to fully distribute the compexity surround-
ing data access, update serialization, replication and re-
liability, failure detection, and recovery operations. Fi-
nally, Ceph utilizes a dynamic distributed metadata clus-
ter architecture that dramatically improves the scalability
of metadata access, (and with it, the scalability of the en-
tire system).

We discuss the goals and workload assumptions moti-
vating our choices in the design of the architecture, ana-
lyze their impact on system scalability, performance, and
reliability, and relate our experiences in implementing a
functional system prototype.

2 System Overview

The Ceph file system has three main components: the
client, each instance of which exposes a near-POSIX file
system interfaces to a host and its applications; a cluster
of OSDs, which collectively stores all file system data
and metadata; and a metadata server cluster, which man-
ages the file system namespace (file names and directo-
ries), while coordinating security, consistency and coher-
ence issues (see Figure 1). We say that Ceph is nearly
POSIX because we have found it appropriate to selec-
tively both relax and extend the interface to improve sys-
tem performance and better align the interface and con-
sistency semantics with the needs of applications.

The primary goals of the architecture are scalability (to
hundreds of petabytes and beyond), performance, and re-
liability. Scalability is considered in a variety of dimen-
sions, including the overall storage capacity and through-
put of the system, and performance in terms of individ-
ual clients, directories, or files. Our target workload may
include such extreme cases as tens or hundreds of thou-

sands of applications reading from or writing to the same
file or creating files in the same directory. Such scenar-
ios, common in scientific applications running on super-
computing clusters, are increasingly prescient of tomor-
row’s general purpose workloads. More importantly, we
recognize that distributed file system workloads are in-
herently dynamic in nature, with significant variation in
data and metadata access as active applications and data
sets change over time. Ceph directly addresses the issue
of scalability while simultaneously achieving high per-
formance, reliability and availability through three fun-
damental design features.
Metadata and Data Decoupling First, Ceph maximizes
the separation of file system metadata management from
the storage of file data. Metadata operations (open, re-
name, etc.) are collectively managed by a metadata
server (MDS) cluster, while clients interact directly with
object storage devices (OSDs) to perform file I/O (reads
and writes). Object-based storage has long promised to
improve the scalability of file systems by delegating low-
level block allocation decisions to individual devices.
However, in contrast to existing object-based file sys-
tems [25, 34, 9, 8], which simply replace long per-file
block lists with shorter object lists, Ceph eliminates allo-
cation lists entirely. Instead, a simple function is used
to name objects containing file data based on the in-
ode number, byte range, and striping strategy, while a
special-purpose data distribution function called CRUSH
assigns objects to specific storage devices. This allows
any party to simply calculate (instead of looking up) the
name and location of objects comprising a file’s contents,
simplifying the design of the system and reducing the
metadata cluster workload.
Dynamic Distributed Metadata Management Because
file system metadata operations (such as stat, readdir, or
open) make up as much as half of typical file system
workloads [22], effective metadata management is crit-
ical to overall system performance. Ceph utilizes a novel
metadata cluster architecture based on Dynamic Subtree
Partitioning [32] that dynamically and intelligently dis-
tributes responsibility for managing the file system direc-
tory hierarchy among tens or even hundreds of metadata
servers (MDSs). A coarse, hierarchical partition pre-
serves locality in each MDS’s workload, facilitating effi-
cient updates and aggressive prefetching to improve per-
formance for common workloads. Most significantly, the
workload distribution among metadata servers is com-
pletely dynamic and based on current access patterns, al-
lowing Ceph to most effectively utilize available MDS
resources under any workload.
Reliable Distributed Object Storage Finally, Ceph del-
egates responsibility for data replication, failure detec-
tion, and failure recovery to the cluster of OSDs that is
storing the data. In clusters composed of many thousands

2

of OSDs, device failure is frequent and expected. More-
over, large systems are dynamic: they are built incremen-
tally, and grow or contract as new storage is deployed or
old devices are decomissioned. All of these factors re-
quire that the distribution of data in the system evolve to
effectively utilize available resources and maintain the
desired level of data replication. Ceph’s OSD cluster
manages the details of replication, recovery, and data
migration in a fully distributed fashion, while at a high
level, Ceph clients and metadata servers treat the OSD
cluster as collectively providing a single distributed and
reliable object store. This approach allows Ceph to more
effectively leverage the intelligence (CPU and memory)
present on each OSD to achieve reliable, highly available
object storage and self-healing with linear scaling.

The following sections describe the operation of the
Ceph client, metadata server cluster, and distributed ob-
ject store, and how they are affected by the critical fea-
tures of our architecture. Where appropriate, we also de-
scribe the status of our prototype and how it differs from
our design.

3 Client Operation
Each Ceph client provides a POSIX file system interface
to applications. We begin by describing client operation
both to introduce the overall operation and interaction
of system components, and Ceph’s interaction with ap-
plications that use it. Applications can link directly to
the client code, which runs entirely in user space, either
without modification by linking to a C library overload-
ing POSIX file system calls (our prototype implements
the most common, e. g. open, write, chdir), or by uti-
lizing the native C++ class interface, which provides a
slightly cleaner interface. A thin glue layer also allows
a Ceph file system to be mounted natively under Linux
via FUSE (a user space file system interface). The client
maintains its own file data cache, independent of the ker-
nel page or buffer caches, making it accessible to appli-
cations that link to the client directly.

3.1 File I/O and Capabilities
When a process opens a file, the client first sends a re-
quest to the MDS cluster. An MDS traverses the file sys-
tem hierarchy to translate the file name into the file inode,
which includes a unique inode number, the file owner,
mode, size, and other per-file metadata. If the file exists
and access is granted, the MDS returns the inode num-
ber, file size, and information about the striping strategy
used to map file data into objects. The MDS may also
issue the client node a capability for the file (if it does
not already have one) specifying exactly which read or
write operations it is authorized to perform. Capabilities

issued to clients currently include four bits, controlling
the client’s ability to read, cache reads, write, or buffer
writes. In the future, capabilities will also include secu-
rity keys allowing clients to prove to OSDs that they are
authorized to read or write data (the prototype trusts all
clients). After a file has been opened, MDS involvement
in file I/O is limited only to managing capabilities to pre-
serve file consistency and achieve proper semantics.

Ceph generalizes a broad class of file data layout
strategies to map file data onto a sequence of objects.
Successive stripe size blocks of the file are assigned to
the first stripe width objects, until objects reach a max-
imum object size, at which point a new set of objects is
used. Whatever the layout (by default we simply break
files into 1 MB chunks), an additional variable specifies
how many replicas are stored of each object. To avoid
any need for file allocation metadata, object names are
constructed by concatenating the file inode number and
the object number. Object replicas are then assigned to
OSDs using CRUSH, a globally known mapping func-
tion (described in detail in Section 5.1).

For example, if one or more clients open a file for read-
only access, an MDS grants them the capability to read
and cache file content. Armed with the inode number,
layout, and file size, the clients can locate all objects con-
taining file data and read directly from the OSD cluster.
Any objects or byte ranges that don’t exist are defined
to be file “holes”, or zeros. Similarly, if a single client
opens a file for writing, it is granted the capability to
write with buffering, any data it generates at any offset
in the file is simply written to the appropriate object on
the appropriate OSD. When the file is closed, the client
relinquishes the write capability and provides the MDS
with the new file size (the largest offset written), which
defines the set of objects that (may) exist and contain file
data.

3.2 Client Synchronization
If a file is opened by multiple clients for writing, or for
both reading and writing, things become more complex.
POSIX semantics sensibly require that reads reflect any
data previously written, and that writes are atomic (e. g.
the result of overlapping, concurrent writes will reflect
a particular order of occurrence). When a file is opened
by multiple clients with either multiple writers or a mix
of readers and writers, the MDS will revoke any previ-
ously issued read caching and write buffering capabili-
ties, forcing all client I/O to be synchronous. That is,
each application read or write operation will block until
it is acknowledged by the OSD, effectively placing the
burden of update serialization and synchronization with
the OSD storing each object.1

Not surprisingly, synchronous I/O can be a perfor-

3

mance killer for applications (particularly those doing
small reads or writes) due to the latency penalty (at least
one round-trip to the OSD). Although read-write sharing
is relatively rare in general-purpose workloads [22], it is
more common in scientific computing applications [29],
where performance is often critical. For this reason, it
is often desireable to relax consistency at the expense of
strict standards conformance in situations where appli-
cations do not rely on it. Although Ceph supports such
relaxation via a global switch, and many other distributed
file systems punt on this issue [20] (help! other examples
besides nfs3? sorrento adopts a totally different consis-
tency model, so it’s no fair to rag on them here.), this is an
imprecise and unsatisfying solution: either performance
suffers, or strict consistency is lost.

For precisely this reason a set of high performance
computing extensions to the POSIX I/O interface have
been proposed by the HPC community. Most notably,
these include an O LAZY flag for open that allows ap-
plications to explicitly relax the usual coherency re-
quirements to improve performance for a shared-write
file [33]. Performance-conscious applications who man-
age their own consistency (e. g. by writing to differ-
ent parts of the same file, a common pattern in HPC
workloads [29]) are then allowed to buffer writes or
cache reads when I/O would otherwise be performed
synchronously. If desired, applications can then ex-
plicitly synchronize with two additional system calls:
lazyio propogate will flush a given file byte range to the
appropriate OSDs, while lazyio synchronize will ensure
that the effects of previous propogations are reflected in
any subsequent reads. The latter is implemented effi-
ciently by provisionally invalidating cached data, such
that subsequent read requests will be sent to the OSD but
only return data if it is newer than what is in the cache.
The Ceph synchronization model thus retains its sim-
plicity by providing correct read-write and shared-write
semantics between clients via synchronous I/O, and ex-
tending the application interface to relax consistency for
performance conscious distributed applications.

3.3 Namespace Operations
Client interaction with the file system namespace is man-
aged by the metadata server cluster. Both read operations
(e. g. readdir, stat) and updates (e. g. unlink, chmod) are
synchronously applied by the MDS to ensure serializa-
tion, consistency, correct security, and safety. For sim-
plicity, no metadata locks or leases are issued to clients.
For HPC workloads in particular, callbacks offer mini-
mal upside at a high potential cost in complexity.

Instead, Ceph optimizes for the most common meta-
data access scenarios. A readdir followed by a stat of
each file (e. g. ls -l) is an extremely common access

pattern and notorious performance killer in large direc-
tories. A readdir in Ceph requires only a single MDS
request, which fetches the entire directory list, including
inode contents. By default, if a readdir is immediately
followed by one or more stats, the (briefly) cached infor-
mation is returned; otherwise it is discarded. Although
this relaxes coherence slightly in that an intervening in-
ode modification may go unnoticed, we gladly make this
trade for vastly improved performance. This behavior
is explicitly captured by the readdirplus [33] extension,
which returns lstat results directly with directory entries
(as some OS-specific implementations of getdir already
do).

Ceph can allow consistency to be further relaxed by
caching metadata longer, much like earlier versions of
NFS (which typically cache for 30 seconds). However,
this approach breaks coherency in a way that is often crit-
ical to applications, such as those using stat to determine
if a file has been updated—they either behave incorrectly,
or end up waiting for old cached values to time out.

We opt instead to again provide correct behavior and
extend the interface in instances where it adversely af-
fects performance. This choice is most clearly illustrated
by a stat operation on a file currently opened by multi-
ple clients for writing. In order to return a correct file
size and modification time, the MDS revokes any write
capabilities on the file to momentarily stop updates and
collect up-to-date size and mtime values from all writ-
ers. The highest values are returned with the stat reply,
and capabilities are reissued to allow further progress.
Although stopping multiple writers may seem drastic, it
is necessary to ensure proper serializability. (For a single
writer a correct up-to-date value can be retrieved from the
writing client without interrupting progress.) Applica-
tions who find coherent behavior costly or unnecessary—
victims of a POSIX interface that doesn’t align with their
needs—can opt to use the new statlite operation [33],
which takes a bit mask specifying which inode fields are
not required to be coherent.

4 Dynamically Distributed Metadata
shorten this way down, referencing details in sc04 paper!
1-2 pgs.

Metadata operations often make up as much as 50%
of file system workloads [22], making the MDS cluster
critical to overall system performance. Metadata man-
agement also presents a critical scaling challenge in dis-
tributed file systems: although capacity and aggregate
I/O rates can scale almost arbitrarily with the addition
of more storage devices, metadata operations involve a
greater degree of interdependence that makes scalable
consistency and coherence management more difficult.

Although metadata (like data) are ultimately stored on

4

ada c
ba

…..

flush pointer

obsolete,
discarded

will write to
long-term storage

rbrqeb tbss u v

commit pointer

writing
to journal

Figure 2: Each MDS maintains a very large journal (hun-
dreds of megabytes) to efficiently stream commits to disk
and to absorb repetitive updates.

disk in a cluster of OSDs for safety, the MDS cluster
maintains a large distributed in-memory cache to maxi-
mize performance. File and directory metadata in Ceph
is very small, consisting only of directory entries (file
names) and inode structs (80 bytes) with occasional file
attributes. Unlike conventional file systems, no file al-
location metadata is necessary—object names are con-
structed using the inode number, and distributed to OSDs
using CRUSH. This simplifies the metadata workload
and allows our MDS to efficiently manage a very large
working set of files, independent of average file sizes.
Our design further seeks to maximize locality and cache
efficiency for each MDS, minimizing metadata related
disk I/O through the use of a two-tiered storage strategy
and efficient Dynamic Subtree Partitioning [32].

4.1 Metadata Storage
Although the MDS cluster aims to satisfy most meta-
data requests from its in-memory cache, all metadata up-
dates must also be committed to disk for safety. A set
of large, bounded, lazily flushed journals allows each
MDS to quickly stream its updated metadata to disk in
an efficient and distributed manner. The large per-MDS
journals, each many hundreds of megabytes, also serve
to absorb repetitive metadata updates (common to most
workloads) such that when old journal entries are eventu-
ally flushed to long-term storage, many will have already
been rendered obsolete, such that far fewer updates are
required (see Figure 2). Although recovery is not yet
implemented by our prototype, the journals are designed
such that in the event of an MDS failure, another node
can quickly rescan the journal to both partially recon-
struct the contents of the failed node’s in-memory cache
(for quicker startup) and (in doing so) recover the Ceph
file system state.

This two-tiered strategy provides the best of both
worlds: streaming updates to disk in an efficient (sequen-
tial) fashion, and a vastly reduced re-write workload, al-
lowing the long-term on-disk storage layout to be opti-
mized for future read access. In particular, inodes are
embedded directly within directories, allowing the MDS

RootRoot

MDS 0 MDS 4MDS 1 MDS 2 MDS 3

Individual directory hashed and shared by multiple MDS’s

Figure 3: Ceph dynamically maps subtrees of the di-
rectory hierarchy to metadata servers based on current
workloads. Individual directories are hashed across mul-
tiple nodes only when they become hot spots.

to prefetch entire directories with a single OSD read re-
quest, exploiting the high degree of directory locality
present in most workloads [22]. Each directory’s con-
tent, which consists of file names and inodes, is written to
an OSD cluster using the same object striping and distri-
bution strategy as file data. Inode numbers are managed
with journaled updates and distributed free lists (or sim-
ply considered immutable, as in our prototype), while an
auxiliary anchor table [30] is used to keep the rare inode
with multiple hard links globally addressable by inode
number—all without encumbering the overwhelmingly
common case of singly-linked files with an enormous,
sparsely populated and cumbersome conventional inode
table.

4.2 Dynamic Subtree Partitioning
The primary-copy caching strategy makes a single au-
thoritative MDS responsible for managing cache coher-
ence and serializing and committing updates for any
given piece of metadata. While most existing distributed
file systems employ some form of static subtree-based
partitioning to delegate this authority (usually forcing an
administrator to carve their dataset into smaller static
“volumes”), some recent and experimental file systems
have tried hash functions to distribute directory and file
metadata [25], effectively sacrificing locality for load
distribution. Both approaches have critical limitations:
static subtree partitioning fails to cope with dynamic
workloads and data sets, while hashing destroys meta-
data locality and critical opportunities for efficient MDS
prefetching and storage.

Ceph’s metadata server cluster is based on a dynamic
subtree partitioning strategy that allows it to adaptively
distribute cached metadata hierarchically across a set of
MDS nodes [32], as illustrated in Figure 3. Each MDS
monitors the popularity of metadata within the directory
hierarchy using counters with an exponential time de-
cay attached to in-memory inodes. Any operation in-

5

crements the counter not only on the affected inode, but
also on all of its ancestors up to the root directory, pro-
viding each MDS with a weighted tree describing the
recent load distribution. Periodically MDS load val-
ues are compared across the MDS cluster, and arbitrary
and variably-sized subtrees of the directory hierarchy are
seamlessly reassigned and migrated to keep the work-
load evenly distributed. The combination of shared long-
term storage and carefully constructed namespace locks
allows such migrations to proceed by effectively trans-
fering the appropriate contents of the in-memory cache
(including “dirty” metadata that hasn’t been flushed from
the MDS journal) to the new subtree authority, with min-
imal impact on coherence locks or client capabilities tied
to the individual metadata being migrated. The resulting
subtree-based partition it kept coarse to minimize prefix
replication overhead and preserve locality.

When metadata is replicated across multiple MDS
nodes, inode contents are separated into three groups,
each with different consistency semantics: security
(owner, mode), file (size, mtime), and immutable (inode
number, ctime, layout). While immutable fields never
change, security and file locks are governed by inde-
pendent finite state machines, each with a different set
of states and transitions designed to accomodate differ-
ent access and update patterns while minimizing lock
contention. For example, owner and mode are required
for the security check during path traversal but rarely
change, requiring only a few states, while the file lock
reflects a wider range of client access modes as it con-
trols an MDS’s ability to issue client capabilities or reply
to stat.

4.3 Traffic Control
The distribution of the directory hierarchy across multi-
ple nodes can balance a broad range of workloads, but
does nothing to cope with hot spots or flash crowds,
where many clients access the same directory or file.
Ceph uses its knowledge of metadata popularity to pro-
vide a wide load distribution for hot spots only when it
is needed and without incurring the associated overhead
and loss of directory locality in the general case. The
contents of heavily read directories (e. g. many opens)
are selectively replicated across multiple nodes to dis-
tribute load. Directories that are particularly large or
experiencing a heavy write workload (e. g. many file
creations) are individually hashed (by file name) across
the cluster, achieving a balanced distribution at the ex-
pense of directory locality. This dynamic approach al-
lows Ceph to encompass a broad spectrum of partition
granularities, dynamically capturing the benefits of both
coarse and fine partitions in the specific regions where
those strategies are most effective.

Every MDS response comes bundled with updated in-
formation about the authority and any replication of the
relevant inode and its ancestors, which clients use to
“learn” the metadata partition for the parts of the file sys-
tem they interact with. Future metadata operations are
directed either at the authority (for updates) or a random
replica (for reads) based on the deepest known prefix of
a given path. Normally clients learn the proper locations
of unpopular (unreplicated) metadata and are able to con-
tact the appropriate MDS directly. Clients accessing pop-
ular metadata, on the other hand, are told the metadata
resides either on different or multiple MDS nodes, effec-
tively bounding the number of clients believing any par-
ticular piece of metadata resides on any particular MDS,
dispersing potential hot spots and flash crowds before
they occur.

5 Distributed Object Storage

From a high level, Ceph clients and metadata servers
view the object storage cluster (possibly tens or hundreds
of thousands of OSDs) as a single logical object store
with a single object namespace. Ceph’s Reliable Auto-
nomic Distributed Object Store (RADOS) achieves lin-
ear scaling in both capacity and aggregate performance
by delegating management of object distribution replica-
tion, cluster expansion, and failure recovery to the OSDs
in a fully distributed fashion.

5.1 Data Distribution with CRUSH
Ceph must distribute petabytes of data among an evolv-
ing cluster of thousands of storage devices such that de-
vice storage and bandwidth resources are most effec-
tively utilized. In order to avoid imbalance (e. g. recently
deployed devices mostly idle or empty) or load assyme-
tries (e. g. new, hot data on new devices only), we adopt a
distribution strategy that migrates a random subsample of
existing data to new devices and uniformly redistributes
data on removed devices. This stochastic approach is ro-
bust in that it performs equally well under any potential
workload. Moreover, we utilize a function for data place-
ment to avoid bottlenecks related to location metadata or
allocation (e. g. block allocation in GPFS [yes? no?]).

Data distribution is accomplished by first mapping ob-
jects into placement groups (PGs), and then assigning
each PG to be replicated across a list of OSDs. Each 128-
bit object name (formed by combining the inode number
and file object number) is translated into a 32-bit place-
ment key via a simple hash function, the lowest pg bits

bits of which identify the object’s placement group. Set-
ting (or changing) pg bits allows one to control the to-
tal number of placement groups as the system grows
(or contracts) by potentially several orders of magnitude

6

over its lifetime. We currently choose a value that gives
each OSD on the order of 100 PGs to limit the amount of
replication-related metadata maintained by each OSD.

Placement groups are mapped to an ordered list of
OSDs using the CRUSH algorithm (Controlled Repli-
cation Under Scalable Hashing) [31], a pseudo-random
data distribution function that efficiently and robustly
maps each PG to a list of OSDs upon which to store ob-
ject replicas. This differs from conventional approaches
(including other object-based file systems like Lustre and
PanFS [25, 34]) in that data placement does not rely
on any block or object lists on the MDS. In contrast,
to locate any placement group (and hence any object)
CRUSH requires only the placement group and an OSD
cluster map: a compact, hierarchical description of the
(weighted) devices comprising the storage cluster. This
approach has two key advantages: first, it is completely
distributed such that any party (client, OSD, or MDS) can
independently calculate the location of any object; and
second, the OSD cluster map is infrequently updated, vir-
tually eliminating any distribution-related metadata that
must be exchanged. In doing so, CRUSH simultaneously
solves both the data distribution problem (“where should
I store data”) and the data location problem (“where did
I store data”).

The OSD cluster map hierarchy is structured to align
with its physical composition and potential sources of
failure. For instance, one might form a five-level hierar-
chy for an installation consisting of shelves full of OSDs,
rack cabinets full of shelves, rows of cabinets, and many
rows in each room. Each OSD is also assigned a weight
value, which controls the relative amount of data it is
assigned. CRUSH maps PGs onto OSDs based on place-
ment rules, which define the level of replication and any
constraints on placement. For example, one might spec-
ify that each placement group is to be replicated on three
OSDs, all situated in the same row (to limit inter-row
replication traffic) but separated into different cabinets
(to minimize exposure to a power circuit or edge switch
failure). The cluster map also includes a list of failed
or inactive devices, and is tagged with a version num-
ber, which is incremented by an MDS each time the map
changes. All OSD requests are tagged with the caller’s
map version, such that all parties agree on the current
distribution of data, and map updates piggyback on OSD
replies if the caller’s map is found to be out of date.

5.2 Replication
Unlike systems like Lustre [25], which assume one can
construct sufficiently reliable OSDs using mechanisms
like RAID or fail-over on a SAN, we assume that in a
multi-petabyte system OSD failure will the norm rather
than the exception, and that at any point in time several

OSDs are likely to be inoperable. To maintain system
availability and ensure data safety in a scalable fashion,
the Ceph OSD cluster manages its own replication of
data, while taking steps to minimize the impact of repli-
cation on performance.

Data is replicated in terms of placement groups, each
of which is assigned (by CRUSH) to an ordered list of
n OSDs (for n-way replication). Clients send all write
requests to the first non-failed OSD in an object’s place-
ment group (designated the primary), who applies the
update locally, updates the version number associated
with the object and PG, and forwards the update to any
replica OSDs. When each replica applies the update and
responds to the primary, the write is acknowledged to the
client. This approach spares the client of any of the com-
plexity surrounding synchronization or serialization be-
tween multiple object replicas, which can become oner-
ous in the presence of other writers or failure and recov-
ery operations. It also shifts the bandwidth consumed
with replication activities from client to the OSD clus-
ter’s internal network, where we expect greater resources
to be available. Object version numbers are based on a
64-bit Lamport-style clock maintained by the messaging
layer, functioning like a timestamp; each PG’s version is
effectively defined as its most recently updated object’s
version.

5.3 Data Safety
In distributed storage systems, there are essentially two
different reasons why data is written to shared storage.
First, we are interested in making our updates visible to
other clients. This should be quick: we’d like our appli-
cations to know their writes are visible as soon as possi-
ble, particularly when multiple writers or mixed readers
and writers force clients to operate synchronously. Sec-
ond, we are interested in data safety, such that we can
know reliably that the data we’ve written is safely repli-
cated and on disk and will survive power or other fail-
ures. Ceph’s object store disassociates synchronization
from safety when acknowledging updates, allowing the
system to realize both low-latency updates for efficient
application synchronization and well-defined data safety
semantics.

Figure 4 illustrates the messages sent during an object
update request. OSDs first apply the update to their in-
memory buffer caches, and immediately reply with an
ack. A final commit is only sent (perhaps many seconds)
later when the update is safely committed to disk. We
send the ack to the client only after the update is applied
to the in-memory caches on all replicas, even though this
increases client latency by an additional round-trip, be-
cause we want to seamlessly tolerate the failure of any
single OSD. This leaves data exposed only to a simul-

7

Client Primary OSD Replica OSD Replica OSD

Write
Ack
Commit to disk
Commit

Ti
m

e

Figure 4: The OSD cluster responds with an ack after the
write has been applied to the buffer caches on all OSDs
replicating the object. Only after it has been safely com-
mitted to disk is a final commit notification sent to the
client.

taneous power loss to all OSDs in the placement group,
a risk we mitigate by separating replicas across different
failure domains with the CRUSH distribution policy. The
addition of client-driven ordered replay of uncommitted
updates would protect against such coincident failures
and allow us to acknowledge updates sooner, although
this is not yet implemented by our prototype.

5.4 Failure Detection
The task of detecting OSD failures is partially dis-
tributed. For certain failures, such as disk hardware er-
rors or corrupted data, OSDs can self-report. Failures
that make an OSD unreachable on the network (e. g.
power or network failure), however, require active mon-
itoring. Ceph distributes OSD liveness verification by
having each OSD ping a pseudo-random subset of its
peers at regular intervals. In certain cases, existing inter-
OSD replication traffic serves as a passive confirmation
of liveness, with no additional communication overhead.
If an OSD has not heard from a peer recently, an explicit
ping is sent.

Because a wide variety of network anomalies may
cause intermittent lapses in OSD connectivity, the MDS
cluster collects failure reports and verifies failures to fil-
ter out transient or systemic problems (like a network
partition) centrally. Updated OSD cluster maps are then
broadcast to all OSDs2. This combination of distributed
detection and a centralized coordinator in Ceph takes
the best from both worlds: it allows fast detection with-
out unduly burdening the MDS cluster, and resolves the
occurrence of inconsistency with the arbitrament of the
MDS cluster.

For greater flexibility, and in order to cope with inter-
mitten OSD failures (e. g. a reboot), the Ceph OSD clus-
ter considers two dimensions of OSD liveness: whether
the OSD is reachable and responsive, and whether it is
assigned data by CRUSH. A non-responsive OSD is ini-

tially marked as down in the OSD cluster map, indicating
that it is not reachable. Any primary responsiblities (up-
date serialization, replication) temporarily pass on to the
next OSD for each of its placement groups. If after some
interval the OSD does not recover, it is marked out of the
data distribution map, at which point the acting primary
becomes the new primary, another OSD is added to the
placement group, and the new OSD initiates recovery by
replicating all PG contents. Although our prototype does
not yet cope with communication failures, in the future
clients attempting to access a newly failed disk will sim-
ply time out and retry OSD operations, walking through
all OSDs in the PG until the operations succeeds or a new
OSD status (failed or out) is learned. Operations that are
not directed at the acting primary are simply forwarded
within the OSD cluster.

5.5 Recovery and Cluster Updates
more detail here.

The OSD cluster map will change due to OSD fail-
ures, recoveries, and explicit cluster changes such as the
deployment of new storage. In all cases, a similar “recov-
ery” procedure is followed. On boot, each OSD begins
by retrieving the latest OSD cluster map from an MDS.
It then iterates through all possible placement groups (as
specified by pg bits) and calculates the CRUSH mapping
to discover which PGs it is responsible for, either as a
primary or a replica. For every PG it replicates, the OSD
establishes a peering session with the primary by sending
the current version number for its placement groups. For
each primary PG, the OSD collects the replica’s versions
and, if necessary, retrieves the full PG content list (ob-
ject names and versions) in order to determine the correct
(most recent) PG contents. This may involve waiting for
PG OSDs from prior cluster map versions in order to lo-
cate all PG objects. At this point, each replica receives
the latest PG content list, such that all parties agree to
what the placement group contents should be, although
their locally stored object set may not match. Each OSD
is then independently responsible for retrieving missing
or outdated objects from its peers. If an OSD receives
a request involving a missing or outdated object, it de-
lays processing and moves that object to the front of the
recovery queue.

Whenever an OSD obtains an updated cluster map (ei-
ther from an MDS or a peer), it quickly checks to see if
any of its placement groups are affected (e. g. by an OSD
newly marked as failed). The peering process (or an ab-
breviated version of it) is repeated for only those PGs
where it is necessary (i. e. those that gained or lost an
OSD). When an OSD crashes, is marked failed, and then
recovers, for example, its designated role as primary is
restored when it contacts the MDS on startup. When the

8

temporary acting primary receives the map update, it will
realize it is no longer the primary and will re-peer with
the recovered OSD. The recovered primary will realize it
has an older version of the PG contents, and will retrieve
the latest content list from the previous acting primary.

Because failure recovery and the resulting data re-
replication is driven entirely by individual OSDs, each
PG affected by a failed OSD will recover in paral-
lel to (very likely) different replacement OSDs selected
by CRUSH. This approach, based on the Fast Recov-
ery Mechanism (FaRM) [39], decreases overall recovery
times proportional to the number of PGs on each OSD,
and improves overall data safety.

5.6 Object Storage with EBOFS
Although a variety of distributed file systems use exist-
ing kernel file systems like ext3 to manage local object
storage on each OSD, we found their interface and per-
formance to be poorly suited for object workloads. Each
Ceph OSD manages its local object storage with EBOFS,
our special-purpose Extent and B-tree based Object File
System.

First, we found that the existing kernel file system in-
terface limited our ability to explicitly understand when
object updates were safely committed on disk. Although
fully synchronous writes or full journaling could pro-
vide the desired safety, that ability comes with a heavy
latency and performance penalty. The POSIX interface
also fails to support atomic data and metadata (e. g. ver-
sion attribute) update transactions, which were impor-
tant for maintaining RADOS consistency. Implement-
ing EBOFS entirely in user space and interacting directly
with a raw block device allowed us to define our own
low-level object storage interface and update semantics,
which separate update serialization (for synchronization)
from on-disk commits (for safety). EBOFS update func-
tions return when the in-memory caches are updated,
while providing asynchronous notification of commits
via a callback interface.

A user space approach, aside from providing greater
flexibility and easier implementation, also allowed us to
avoid cumbersome interaction with the Linux VFS and
page cache, both of which were designed for a differ-
ent interface and workload. While most kernel file sys-
tems lazily flush updates to disk after some time interval,
EBOFS aggressively schedules disk writes, and opts in-
stead to cancel pending I/O operations when subsequent
updates render them superfluous. This approach pro-
vides our low-level disk scheduler with larger I/O queues
and the corresponding increase in I/O scheduling effi-
ciency. It also affords us convenient access to the sched-
uler, making it simple to eventually prioritize workloads
(e. g. client I/O versus recovery) or provide explicit qual-

ity of service guarantees [38].
Central to the EBOFS design is a robust, flexible yet

fully integrated B-tree service that is used to locate ob-
jects on disk, manage block allocation, and index col-
lections. Collections are named and efficiently indexed
sets of objects, and are used by Ceph to group objects
into placement groups. Block allocation is conducted
in terms of extents—start and length pairs—instead of
block lists, keeping metadata compact. Free block ex-
tents on disk are binned by size and stored in B-trees,
sorted by location. This allows EBOFS to quickly and
efficiently locate free space near the write position or re-
lated data on disk, while also limiting long-term frag-
mentation. With the exception of per-object block allo-
cation information, all metadata is kept in memory for
performance and simplicity (it is quite small, even for
very large volumes).

Finally, EBOFS aggressively performs copy-on-write:
data is only ever written to unallocated regions of disk.
The single exception is a pair of versioned superblocks
containing pointers to the B-tree root nodes (and by im-
plication all EBOFS metadata), which are updated in an
alternating pattern on each commit cycle (either on idle
or every few seconds). On mount we simply choose the
newest superblock, secure in the knowledge that each
commit reflected a completely consistent and unadul-
tered snapshot of the local object file system state.

6 Performance and Scalability Evaluation

We evaluate our prototype under a range microbench-
marks to demonstrate key elements of the architecture
and the scalability of its performance. In all of our tests,
clients, OSDs, and MDSs are user processes running on
a Linux cluster, communicating using TCP. In general,
each OSD or MDS runs on its own host, while tens or
hundreds of client instances may share the same host
while generating workload.

6.1 Data Performance
Distribution of replication and failure recovery allows the
aggregate performance of our OSD cluster to scale lin-
early with the size of the cluster. Our performance tests
are conducted using 14 OSDs running on dual-processor
Xeons with SCSI disks. We achieve perfect linear scal-
ing until that point, after which throughput is limited by
our network switch.

6.1.1 OSD Throughput

We begin by measuring the I/O performance of a 14-node
cluster of OSDs. Figure 5 shows per-OSD throughput
with varying write sizes (X) and levels of replication.

9

Write Size (KB)
4 16 64 256 1024 4096

Pe
r−

O
SD

 T
hr

ou
gh

pu
t (

M
B/

se
c)

0

10

20

30

40

50

60

1x replication
2x replication
3x replication

Figure 5: Per-OSD write performance. Data replica-
tion has minimal impact on OSD efficiency. If the num-
ber of OSDs is fixed, n-way replication reduces effective
throughput by a factor of n because replicated data must
be written to n OSDs. The horizontal line indicates the
upper limit imposed by the physical disk.

The workload is generated by 400 client instances (on 20
additional nodes). Performance is ultimately limited by
the raw disk bandwidth (around 50 MB/sec), shown by
the dotted lines. Since replication doubles or triples disk
I/O at a constant number of OSDs, we see correspond-
ingly lower client data rates. Small writes are less effi-
cient both because of greater communications overhead
and coarse locking in the current EBOFS implementa-
tion.

Figures 6 and 7 compare per-OSD performance when
general-purpose file systems (ext3, XFS, ReiserFS) are
used for local object storage instead of EBOFS. Al-
though small read and write performance in EBOFS cur-
rently suffers from coarse threading and locking, EBOFS
very nearly saturates the available disk bandwidth for
writes larger than 32 KB. EBOFS significantly outper-
forms the others for read workloads because data is laid
out in large extents on disk when it is written in large
increments.

6.1.2 Write Latency

Figure 8 shows the synchronous write latency for a sin-
gle writer with varying write sizes (X) and levels of data
replication. Because the primary OSD simultaneously
retransmits updates to all replicas, for small writes we
see a minimal latency increase for more than two repli-
cas. For larger writes, the cost of retransmission begins
to dominate; 1 MB writes (not shown) take 13 ms for one
replica, and 3.6 times longer (47 ms) for four. Although
we have considered the possibility of mitigating this ef-
fect by pipelining large writes to replicas, much like the
Google File System [8], it is not clear that the payoff will

Write Size (KB)
4 16 64 256 1024 4096 16384

Pe
r−

O
SD

 T
hr

ou
gh

pu
t (

M
B/

se
c)

0

10

20

30

40

50

60

ebofs
xfs
reiserfs
ext3

Figure 6: Write performance of EBOFS compared to
general-purpose file systems. Although small writes suf-
fer from coarse locking in our prototype, EBOFS very
nearly saturates the disk for writes larger than 32 KB.

Read Size (KB)
4 16 64 256 1024 4096 16384

Pe
r−

O
SD

 T
hr

ou
gh

pu
t (

M
B/

se
c)

0

10

20

30

40

50

60

ebofs
xfs
reiserfs
ext3

Figure 7: Read performance of EBOFS compared to
general-purpose file systems. EBOFS lays out data in
large extents when it is written in large increments, al-
lowing it to offer significantly better performance than
general purpose file systems.

10

Write Size (KB)
4 16 64 256 1024

W
rit

e
La

te
nc

y
(m

s)

0
1
2
3
4
5
6
7
8
9

10
1x
2x
3x
4x

Figure 8: Write latency for varying write sizes and levels
of replication. More than two replicas incurs minimal ad-
ditional cost for small writes because replicated updates
occur concurrently. For larger writes, transmission times
dominate.

be very significant since it will only benefit synchronous
large writes—write-sharing applications that are usually
best off using O LAZY. With consistency thus relaxed,
clients can buffer small writes (i. e. zero latency seen by
application) and submit only large, asynchronous writes
to OSDs for maximum efficiency; the only latency seen
by applications will be due to clients filling their caches
and waiting for data to flush to disk. Although our proto-
type includes a simple buffer cache, we are in the process
of redesigning it to better align with object layouts to ac-
comodate data locks.

6.1.3 Data Distribution and Scalability

CRUSH distributes data to OSDs pseudo-randomly, such
that OSD utilizations can be accurately modeled by a bi-
nomial or normal distribution—what one would expect
from a perfectly random process. Relative variance in
utilization decreases as the number of groups increases:
for 100 placement groups the standard deviation is 10%,
while for 1000 groups it drops to 3%. In our experi-
ments the CRUSH distribution closely follows this model
under a wide variety of cluster architectures, including
varying device weights [31]. Because data placement is
a stochastic function, devices can become overutilized
with small probability, potentially dragging down perfor-
mance; CRUSH allows individual OSD utilizations to be
adjusted to correct such situations using a simple feed-
back mechanism.

Figure 9 shows per-OSD write throughput as clus-
ter size increases, using both CRUSH, a simple hash
function, and a linear striping strategy to distribute data.
Throughput with the hash function and CRUSH drop
slightly as OSD request queue lengths drift apart under

OSD Cluster Size
2 6 10 14 18 22 26

Pe
r−

O
SD

 T
hr

ou
gh

pu
t (

M
B/

se
c)

30

40

50

60

CRUSH
hash
linear

Figure 9: OSD write performance scales linearly with
the size of the OSD cluster until we saturate our switch
with 24 OSDs.

our entangled client workload.

6.2 Metadata Performance

Ceph MDS performance is measured by generating a
partial workload that does not include any data I/O.
OSDs in these experiments are used solely for metadata
journaling and storage.

6.2.1 Metadata Update Latency

We first consider the latency associated with syn-
chronous metadata updates (e. g. mknod or mkdir) from
clients. A single client creates a series of files and di-
rectories, which the MDS must synchronously journal
to a cluster of OSDs for safety. We consider both disk-
less metadata servers, where all metadata is stored in a
shared OSD cluster, and an architecture in which each
MDS also has a local disk that serves as the primary
OSD for its journal. Figure 10 shows the latency asso-
ciated with metadata updates in both cases with varying
levels of metadata replication (where zero corresponds
to no journaling at all). Because the objects storing the
metadata journal are first written to the primary OSD and
then replicated to any additional OSDs, we see a jump in
latency from zero to one and one to two replicas for the
diskless MDS approach. When a local disk in each MDS
acts as the primary, the initial hop from the MDS to the
local OSD takes minimal time. This allows an MDS with
a local disk to achieve update latencies for 2x replication
similar to 1x in the diskless model. In both cases, more
than two replicas incurs very little additional latency be-
cause replicated updates are conducted in parallel.

11

Metadata Replication Level
0 1 2 3 4

Up
da

te
 L

at
en

cy
 (m

s)

0

1

2

3

4
diskless
local disk

Figure 10: Metadata update latency for a diskless MDS
and one with an OSD on the same host, with varying lev-
els of replication. Zero corresponds to no journaling. We
can lower the journaling latency with a local disk with
similar reliability by avoiding the initial network round-
trip.

6.2.2 Metadata Read Latency

The behavior of metadata reads (e. g. readdir, stat, file
open) is more complex. We consider a client that walks a
directory hierarchy by doing a readdir in each directory,
doing a stat on each file, and then recursively descending
into any subdirectories. Figure 11 shows cumulative time
consumed by metadata operations during a walk over
10,000 nested directories. Ordinarily, cumulative stat
times would dominate for larger directories. A primed
MDS cache reduces readdir times by avoiding an OSD
access. Subsequent stats are not affected, because inode
contents are embedded in directories, allowing the full
directory contents to be fetched into the MDS cache with
a single OSD access. Using readdirplus, which explic-
itly bundles stat and readdir results in a single MDS op-
eration, or relaxing client consistency by allowing stats
immediately following a readdir to be served from client
caches (the default), eliminates additional MDS interac-
tion beyond the initial readdir.

6.2.3 Metadata Scaling

We evaluate the overall scalability of the metadata clus-
ter by measuring MDS efficiency (per-MDS throughput)
as the total size of the system increases. For each test,
we use the same number of OSDs for metadata storage
as there are MDS nodes, while an additional set of nodes
each run between 25 and 50 independent instances of the
client to generate the workload. Each workload consists
of metadata operations only—no data I/O—allowing us
to simulate the behavior of installations with tens of thou-
sands of OSDs or more. These experiments were con-

10 files / dir 1 file / dir

Cu
m

ul
at

ive
 T

im
e

(s
ec

on
ds

)

0
20
40
60
80

100
120
140
160

fresh primed fresh primed

stat
readdir
readdirplus

Figure 11: Cumulative time consumed by metadata op-
erations during file system walk. A primed MDS cache
eliminates an OSD access, while readdirplus or relaxed
consistency eliminate MDS interaction for stats follow-
ing readdir.

ducted on a 430 node partition of the alc Linux cluster
at Lawrence Livermore National Labs.

Figure 12 shows the average per-MDS throughput (Y)
as a function of MDS cluster size (X) for each work-
load we tested, such that perfect linear scaling would re-
sult in a horizontal line (XẎ for total throughput). The
makedirs workload has each client create a tree of nested
directories four levels deep, with ten files and subdirec-
tories in each directory. Average MDS throughput drops
from 2000 ops per second with a small cluster, to just
over 1000 ops per MDS per second (50% efficiency) with
128 metadata servers. In the writefiles workload, each
client creates a thousands of files in the same (shared)
directory. When the high write levels are detected,
Ceph hashes the shared directory to distribute the work-
load across all MDS nodes. The openshared workload
demonstrates read sharing by having each client repeat-
edly open and close ten shared files. The openssh work-
loads, each client replays a captured file system trace
of a compilation of openssh in a private directory. One
variant uses a shared /lib for moderate sharing, while
the other shares /usr/include, which is very heavily
read. The openshared and openssh+include workloads
have the heaviest read sharing and show the worst scal-
ing behavior, we believe due to poor replica selection by
clients. openssh+lib scales better than the trivially sep-
arable makedirs because it contains relatively few meta-
data modifications and little sharing. Although we be-
lieve that contention in the network or threading of the
communications further lowered performance for larger
MDS clusters, our limited time with dedicated access to
the larger cluster prevented a thorough investigation.

Ceph offers significantly greater scalability and effi-
ciency than existing distributed file systems by several

12

MDS Cluster Size (nodes)
0 16 32 48 64 80 96 112 128

Pe
r−

M
DS

 T
hr

ou
gh

pu
t (

op
s/

se
c)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

makedirs
makefiles
openshared
openssh+include
openssh+lib

Figure 12: Per-MDS throughput under a variety of work-
loads and cluster sizes. As the cluster grows to 128
nodes, efficiency drops only slightly below perfectly lin-
ear (horizontal) scaling, allowing vastly improved per-
formance over existing systems.

orders of magnitude, despite sub-linear scaling. A 128-
nodes MDS cluster running our current prototype can
service more than a quarter million metadata operations
per second (128 nodes at 2000 ops/sec). Because meta-
data transactions are independent of data I/O and meta-
data size is independent of file size, this corresponds to
installations with potentially many hundreds of petabytes
of storage, depending on average file size. For example,
scientific applications creating checkpoints on LLNL’s
Bluegene/L might involve 64 thousand nodes with two
processors each writing to a file in the same directory (as
in the makefiles workload). While BGL’s current stor-
age system peaks at 6,000 metadata ops/sec and would
many minutes to complete each checkpoint, a 128-node
Ceph MDS cluster would finish in two seconds. If each
file were only 10 MB (quite small by HPC standards)
and OSDs sustain 50 MB/sec, such a cluster could write
1.25 TB/sec, saturating at least 25,000 OSDs (50,000
with replication). If each OSD were 250 GB, such a sys-
tem would store more than six petabytes. More impor-
tantly, Ceph’s dynamic metadata distribution approach
allows an MDS cluster (of any size) to reallocate MDS
resources based on the current workload, even when all
clients access metadata previously assigned to a single
MDS, making it significantly more versatile and adapt-
able than any static partitioning strategy.

Figure 13 plots latency versus per-MDS through-
put for a 4-, 16-, and 64-node MDS cluster under
the makedirs workload. Larger clusters have imperfect
load distributions, resulting in lower average per-MDS
throughput (but, of course, much higher total through-
put) and slightly higher latencies.

Per−MDS throughput (ops/sec)
0 500 1000 1500 2000

La
te

nc
y

(m
s)

0

20

40

60
4 MDSs
16 MDSs
128 MDSs

Figure 13: Average latency versus average per-MDS
throughput for different cluster sizes. Larger clusters
have lower average per-MDS throughput.

7 Experiences

Over the course of designing the major subsystems in
Ceph and integrating them into a single system, we ran
into a few surprises, both in terms of elements that were
easier and more difficult that anticipated.

7.1 Metadata Decoupling and Smart OSDs
We were pleasantly surprised to discover the extent to
which replacing file allocation metadata with a globally
known distribution function (originally, RUSH [12]) be-
came a simplifying force in our design. Although this
placed greater demands on the distribution function it-
self, once we realized exactly what those requirements
were (in terms of scalability, flexibility, and reliability),
CRUSH was able to deliver. In return, we vastly simpli-
fied our metadata workload and on-disk layout, and pro-
vided our OSDs with complete and independent knowl-
edge of the data distribution. The latter enabled us to
delegate nearly all responsibility for data replication, mi-
gration, failure detection, and recovery to the OSDs,
distributing these mechanisms in a way that effectively
leveraged their bundled CPU and memory. RADOS has
also opened the door to a range of additional features
that elegently map onto our OSD model, such as bit er-
ror detection (as in the Google File System [8]), dynamic
replication of data based on workload (simliar to Au-
toRAID [36]), and scalable OSD-managed object locks
for improved write-sharing performance.

7.2 Local Object Storage
Although it was tempting to leverage existing kernel file
systems for local object storage (as many other systems
have done [25, 11, 8]), we recognized early on that a file
system tailored for object workloads could offer better

13

performance [29]. What we did not anticipate was the
disparity between the existing kernel (POSIX) file sys-
tem interface and our requirements, which became evi-
dent as we developed the RADOS replication and reli-
ability mechanisms. Our user-space implementation of
EBOFS was surprisingly quick to develop, offered very
satisfying performance, and exposed an interface per-
fectly suited to our requirements.

7.3 Metadata Load Balancing
One of the largest lessons in Ceph was the importance
of the MDS load balancer to overall scalability, and the
complexity of effectively choosing what metadata to mi-
grate where and when. Although in principle our design
and goals seem quite simple, the reality of distributing an
evolving workload among over a hundred MDSs high-
lighted additional subtleties. Most notably, it becomes
increasingly clear that MDS performance has a wide
range of performance bounds, including CPU utilization,
memory (and cache efficiency), and network or I/O limi-
tations, any of which may be limiting performance at any
point in time. Furthermore, it is difficult to quantitatively
capture the balance between total throughput and fair-
ness; under certain circumstances imbalanced metadata
distributions can increase overall throughput [32].

7.4 Implementation Surprises
Finally, implementation of the client file system inter-
face posed a greater challenge than anticipated. Al-
though the use of FUSE vastly simplified the implemen-
tation task by eliminating the need for any kernel work,
it introduced its own set of idiosyncrasies. DIRECT IO
disabled the kernel page cast but didn’t support mmap,
forcing us to modify FUSE to invalidate clean pages
as a workaround. FUSE’s use of the Linux VFS inode
cache and its insistence on performing its own security
checks proved annoying as it results in many unneces-
sary getattrs (stats) for even simple application calls. Fi-
nally, page-based I/O between kernel and user space lim-
its overall I/O rates. Although linking directly to client
avoids FUSE issues, overloading system calls in user
space introduces a new set of issues (most of which we
have yet to fully examine). An in-kernel client is likely
inevitable.

8 Related Work
High-performance, scalable file systems have long been
a goal of the high-performance computing (HPC) com-
munity. HPC systems place a heavy load on the file sys-
tem [19, 26, 29], placing a high demand on the file sys-
tem to prevent it from becoming a bottleneck. As a result,

there have been many scalable file systems that attempt
to meet this need; however, these file systems do not sup-
port the same level of scalability that Ceph does. Some
large-scale file systems, such as OceanStore [13] and
Farsite [1] are designed to provide petabytes of highly
reliable storage, and may be able to provide simultane-
ous access to thousands of separate files to thousands of
clients. However, these file systems are not optimized to
provide high-performance access to a small set of files
by tens of thousands of cooperating clients. Bottlenecks
in subsystems such as name lookup prevent these sys-
tems from meeting the needs of a HPC system. Simi-
larly, grid-based file systems such as LegionFS [35] are
designed to coordinate wide-area access and are not op-
timized for high performance in the local file system.

StorageTank [16]
Parallel file and storage systems such as Vesta [7], Gal-

ley [18], RAMA [17], PVFS and PVFS2 [6, 14], the
Global File System [27] and Swift [5] have extensive
support for striping data across multiple disks to achieve
very high data transfer rates, but do not have strong sup-
port for scalable metadata access or robust data distribu-
tion for high reliability. For example, Vesta permits ap-
plications to lay their data out on disk, and allows inde-
pendent access to file data on each disk without reference
to shared metadata. However, Vesta, like many other
parallel file systems, does not provide scalable support
for metadata lookup. As a result, these file systems typ-
ically provide poor performance on workloads that ac-
cess many small files as well as workloads that require
many metadata operations. They also typically suffer
from block allocation issues: blocks are either allocated
centrally or, in the Global File System, via a lock-based
mechanism. As a result, these file systems do not scale
well to write requests from thousands of clients to thou-
sands of disks. Similarly, the Google File System [8] is
optimized for very large files and a workload consisting
largely of reads and file appends, and is not well-suited
for a more general HPC workload because it does not
support high-concurrency general purpose access to the
file system.

Recently, many file systems and platforms, includ-
ing Federated Array of Bricks (FAB) [23], Kybos [37],
Lustre [3, 25], GPFS [24], the Panasas file system [34],
pNFS [11], Sorrento [28], and zFS [21] have been de-
signed around network-attached storage [9, 10] or the
closely related object-based storage paradigm [2]. All of
these file systems can stripe data across network-attached
devices to achieve very high performance, but they do not
have the combination of scalable metadata performance,
expandable storage, fault tolerance, and POSIX compat-
ibility that Ceph provides. pNFS [11] and the Panasas
object-based file system [34] stripe data across network-
attached disks to deliver very high data transfer rates, but

14

they both suffer from a bottleneck in metadata lookups.
Lustre [3, 25] has similar functionality: it supports nearly
arbitrary striping of data across object storage targets, but
it hashes path names to metadata servers. This approach
distributes the metadata load, but destroys locality and
makes POSIX compatibility difficult, despite schemes
such as LH3 [4]. GPFS [24] also suffers from meta-
data scaling difficulties; while block allocation is largely
lock-free, as it is in most object-based storage systems,
metadata is not evenly distributed, causing congestion in
metadata lookups. Moreover, none of these systems per-
mits a client to locate a particular block of a file without
consulting a centralized table. Sorrento [28] alleviates
this problem somewhat and evenly distributes data and
metadata among all of the servers, but only performs well
in environments with low levels of write sharing in which
processors work on disjoint data sets. FAB [23] focuses
on continuously providing highly reliable storage; while
its performance is acceptable, FAB provides very high
reliability at the cost of somewhat reduced performance.

9 Future Work
A variety of core Ceph elements have not yet been imple-
mented. These include the MDS failure detection and re-
covery, and several remaining POSIX calls on the client.

Although the Ceph dynamically replicates metadata
when flash crowds access single directories or files, the
same is not yet true of file data. We plan to allow OSDs to
dynamically adjust the level of replication for individual
objects based on workload, and to distribute read traf-
fic across all OSDs in the (potentially expanded) place-
ment group when appropriate. This will allow scalable
access to small amounts of data, and may facilitate fine-
grained load balancing using a mechanism similar to D-
SPTF [15].

We plan to experiment with per-object shared or ex-
clusive locks, managed and issued by OSDs, as a means
of avoiding strictly synchronous I/O in shared-write or
read-write situations. This will likely involve client-
driven access prediction in order to request the appro-
priate locks before data is accessed by the application.

We are working on developing a quality of service
architecture to allow both aggregate class-based traffic
prioritization and OSD-managed reservation based band-
width and latency guarantees. This work will likely com-
bine the flexible EBOFS disk scheduler with previous
OSD disk bandwidth shaping research [38], providing an
infrastructure that will help balance RADOS replication
and recovery operations with regular workload. A num-
ber of other EBOFS enhancements are planned, includ-
ing an update journal to reduce the commit latency. We
plan to distribute journal entries among several preallo-
cated regions spread across the disk to minimize the im-

pact on low-level disk scheduling. Data scouring, check-
sums, or other bit-error detection mechanisms will also
improve overall data safety.

Finally, we plan on further investigating the practical-
ity and potential benefits of client callbacks on names-
pace to inode translation metadata. For static regions of
the file system, this would allow opens (for read) to oc-
cur without MDS interaction (e. g. compiler interaction
with /usr/include).

10 Conclusions

Ceph addresses three critical challeneges of storage
systems—scalability, performance, and reliability—by
occupying a unique point in the design space. By shed-
ding design assumptions (like allocation lists) found in
nearly all existing systems, we maximally separate data
from metadata management, allowing them to scale in-
dependently. This separation relies on CRUSH, a data
distribution function that generates a stochastic distribu-
tion (much like a hash function) allowing clients to cal-
culate (instead of looking up) object locations. CRUSH
enforces data replica separation across failure domains
for improved data safety while efficiently coping with
the inherently dynamic nature of large storage clusters,
where devices failures, expansion and cluster restructur-
ing are the norm.

We leverage intelligent OSDs to manage data repli-
cation, failure detection and recovery, low-level disk al-
location, scheduling, and data migration due to clus-
ter expansion without encumbering any central server(s).
Although objects can be considered files and stored by
OSDs using a general-purpose file system, we found that
EBOFS provides more appopriate semantics and supe-
rior performance by addressing the specific workloads
and interface requirements present in Ceph.

Finally, Ceph’s metadata management architecture ad-
dresses one of the most vexing problems in highly scal-
able storage—how to efficiently provide a single uniform
directory hierarchy obeying POSIX directory semantics
with performance that scales with the number of meta-
data servers. Ceph’s dynamic subtree partitioning is a
uniquely scalable approach, offering both efficiency and
the ability to adapt to varying workloads.

11 Acknowledgments

This research was funded in part by the Lawrence Liver-
more National Laboratory. In particular, we would like to
thank Bill Loewe, Tyce McLarty, Terry Heidelberg, and
everyone else at Livermore who talked to us about their
storage trials and tribulations, and who helped facilitate
our two days of dedicated access time on alc. We would

15

also like to thank IBM for donating the 32-node cluster
that aided in much of the OSD performance testing, and
the NSF, who paid for the switch upgrade. Finally, we
would like to thank the students and faculty of the SSRC
for their input and support.

12 Availability

Ceph is licensed under the LGPL and is available at
http://ceph.sourceforge.net/

References
[1] ADYA, A., BOLOSKY, W. J., CASTRO, M., CHAIKEN, R.,

CERMAK, G., DOUCEUR, J. R., HOWELL, J., LORCH, J. R.,
THEIMER, M., AND WATTENHOFER, R. FARSITE: Federated,
available, and reliable storage for an incompletely trusted envi-
ronment. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI) (Boston, MA, Dec.
2002), USENIX.

[2] AZAGURY, A., DREIZIN, V., FACTOR, M., HENIS, E., NAOR,
D., RINETZKY, N., RODEH, O., SATRAN, J., TAVORY, A., AND
YERUSHALMI, L. Towards an object store. In Proceedings of the
20th IEEE / 11th NASA Goddard Conference on Mass Storage
Systems and Technologies (Apr. 2003), pp. 165–176.

[3] BRAAM, P. J. The Lustre storage architecture.
http://www.lustre.org/documentation.html, Cluster File Sys-
tems, Inc., Aug. 2004.

[4] BRANDT, S. A., XUE, L., MILLER, E. L., AND LONG, D. D. E.
Efficient metadata management in large distributed file systems.
In Proceedings of the 20th IEEE / 11th NASA Goddard Con-
ference on Mass Storage Systems and Technologies (Apr. 2003),
pp. 290–298.

[5] CABRERA, L.-F., AND LONG, D. D. E. Swift: Using distributed
disk striping to provide high I/O data rates. Computing Systems
4, 4 (1991), 405–436.

[6] CARNS, P. H., LIGON, W. B., ROSS, R. B., AND THAKUR, R.
PVFS: a parallel file system for Linux clusters. In Proceedings
of the 4th Annual Linux Showcase and Conference (Atlanta, GA,
Oct. 2000), pp. 317–327.

[7] CORBETT, P. F., AND FEITELSON, D. G. The Vesta parallel file
system. ACM Transactions on Computer Systems 14, 3 (1996),
225–264.

[8] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google
file system. In Proceedings of the 19th ACM Symposium on Oper-
ating Systems Principles (SOSP ’03) (Bolton Landing, NY, Oct.
2003), ACM.

[9] GIBSON, G. A., NAGLE, D. F., AMIRI, K., BUTLER, J.,
CHANG, F. W., GOBIOFF, H., HARDIN, C., RIEDEL, E.,
ROCHBERG, D., AND ZELENKA, J. A cost-effective, high-
bandwidth storage architecture. In Proceedings of the 8th In-
ternational Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS) (San Jose,
CA, Oct. 1998), pp. 92–103.

[10] GIBSON, G. A., AND VAN METER, R. Network attached storage
architecture. Communications of the ACM 43, 11 (2000), 37–45.

[11] HILDEBRAND, D., AND HONEYMAN, P. Exporting storage sys-
tems in a scalable manner with pNFS. Tech. Rep. CITI-05-1,
CITI, University of Michigan, Feb. 2005.

[12] HONICKY, R. J., AND MILLER, E. L. Replication under scalable
hashing: A family of algorithms for scalable decentralized data
distribution. In Proceedings of the 18th International Parallel
& Distributed Processing Symposium (IPDPS 2004) (Santa Fe,
NM, Apr. 2004), IEEE.

[13] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., EATON, P., GEELS,
D., GUMMADI, R., RHEA, S., WEATHERSPOON, H., WEIMER,
W., WELLS, C., AND ZHAO, B. OceanStore: An architecture for
global-scale persistent storage. In Proceedings of the 9th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (Cambridge, MA,
Nov. 2000), ACM.

[14] LATHAM, R., MILLER, N., ROSS, R., AND CARNS, P. A next-
generation parallel file system for Linux clusters. LinuxWorld
(Jan. 2004), 56–59.

[15] LUMB, C. R., GANGER, G. R., AND GOLDING, R. D-SPTF:
Decentralized request distribution in brick-based storage systems.
In Proceedings of the 11th International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS) (Boston, MA, 2004), pp. 37–47.

[16] MENON, J., PEASE, D. A., REES, R., DUYANOVICH, L., AND
HILLSBERG, B. IBM Storage Tank—a heterogeneous scalable
SAN file system. IBM Systems Journal 42, 2 (2003), 250–267.

[17] MILLER, E. L., AND KATZ, R. H. RAMA: An easy-to-use,
high-performance parallel file system. Parallel Computing 23, 4
(1997), 419–446.

[18] NIEUWEJAAR, N., AND KOTZ, D. The Galley parallel file sys-
tem. In Proceedings of 10th ACM International Conference on
Supercomputing (Philadelphia, PA, 1996), ACM Press, pp. 374–
381.

[19] NIEUWEJAAR, N., KOTZ, D., PURAKAYASTHA, A., ELLIS,
C. S., AND BEST, M. File-access characteristics of parallel sci-
entific workloads. IEEE Transactions on Parallel and Distributed
Systems 7, 10 (Oct. 1996), 1075–1089.

[20] PAWLOWSKI, B., JUSZCZAK, C., STAUBACH, P., SMITH, C.,
LEBEL, D., AND HITZ, D. NFS version 3: Design and imple-
mentation. In Proceedings of the Summer 1994 USENIX Techni-
cal Conference (1994), pp. 137–151.

[21] RODEH, O., AND TEPERMAN, A. zFS—a scalable distributed
file system using object disks. In Proceedings of the 20th IEEE
/ 11th NASA Goddard Conference on Mass Storage Systems and
Technologies (Apr. 2003), pp. 207–218.

[22] ROSELLI, D., LORCH, J., AND ANDERSON, T. A compar-
ison of file system workloads. In Proceedings of the 2000
USENIX Annual Technical Conference (San Diego, CA, June
2000), USENIX Association, pp. 41–54.

[23] SAITO, Y., FRØLUND, S., VEITCH, A., MERCHANT, A., AND
SPENCE, S. FAB: Building distributed enterprise disk arrays
from commodity components. In Proceedings of the 11th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2004), pp. 48–58.

[24] SCHMUCK, F., AND HASKIN, R. GPFS: A shared-disk file sys-
tem for large computing clusters. In Proceedings of the 2002
Conference on File and Storage Technologies (FAST) (Jan. 2002),
USENIX, pp. 231–244.

[25] SCHWAN, P. Lustre: Building a file system for 1000-node clus-
ters. In Proceedings of the 2003 Linux Symposium (July 2003).

[26] SMIRNI, E., AYDT, R. A., CHIEN, A. A., AND REED, D. A.
I/O requirements of scientific applications: An evolutionary
view. In Proceedings of the 5th IEEE International Symposium
on High Performance Distributed Computing (HPDC) (1996),
IEEE, pp. 49–59.

16

[27] SOLTIS, S. R., RUWART, T. M., AND O’KEEFE, M. T. The
Global File System. In Proceedings of the 5th NASA Goddard
Conference on Mass Storage Systems and Technologies (College
Park, MD, 1996), pp. 319–342.

[28] TANG, H., GULBEDEN, A., ZHOU, J., STRATHEARN, W.,
YANG, T., AND CHU, L. A self-organizing storage cluster for
parallel data-intensive applications. In Proceedings of the 2004
ACM/IEEE Conference on Supercomputing (SC ’04) (Nov. 2004).

[29] WANG, F., XIN, Q., HONG, B., BRANDT, S. A., MILLER,
E. L., LONG, D. D. E., AND MCLARTY, T. T. File system
workload analysis for large scale scientific computing applica-
tions. In Proceedings of the 21st IEEE / 12th NASA Goddard
Conference on Mass Storage Systems and Technologies (College
Park, MD, Apr. 2004), pp. 139–152.

[30] WEIL, S. A. Scalable archival data and metadata management in
object-based file systems. Tech. Rep. SSRC-04-01, University of
California, Santa Cruz, May 2004.

[31] WEIL, S. A., BRANDT, S. A., MILLER, E. L., AND
MALTZAHN, C. CRUSH: Controlled, scalable, decentralized
placement of replicated data. Tech. Rep. SSRC-06-01, Univer-
sity of California, Santa Cruz, Jan 2006.

[32] WEIL, S. A., POLLACK, K. T., BRANDT, S. A., AND MILLER,
E. L. Dynamic metadata management for petabyte-scale file sys-
tems. In Proceedings of the 2004 ACM/IEEE Conference on Su-
percomputing (SC ’04) (Pittsburgh, PA, Nov. 2004), ACM.

[33] WELCH, B. POSIX IO extensions for HPC. In Proceedings of
the 4th USENIX Conference on File and Storage Technologies
(FAST) (Dec. 2005).

[34] WELCH, B., AND GIBSON, G. Managing scalability in object
storage systems for HPC Linux clusters. In Proceedings of the
21st IEEE / 12th NASA Goddard Conference on Mass Storage
Systems and Technologies (Apr. 2004), pp. 433–445.

[35] WHITE, B. S., WALKER, M., HUMPHREY, M., AND
GRIMSHAW, A. S. LegionFS: A secure and scalable file system
supporting cross-domain high-performance applications. In Pro-
ceedings of the 2001 ACM/IEEE Conference on Supercomputing
(SC ’01) (Denver, CO, 2001).

[36] WILKES, J., GOLDING, R., STAELIN, C., AND SULLIVAN, T.
The HP AutoRAID hierarchical storage system. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles
(SOSP ’95) (Copper Mountain, CO, 1995), ACM Press, pp. 96–
108.

[37] WONG, T. M., GOLDING, R. A., GLIDER, J. S., BOROWSKY,
E., BECKER-SZENDY, R. A., FLEINER, C., KENCHAMMANA-
HOSEKOTE, D. R., AND ZAKI, O. A. Kybos: self-management
for distributed brick-base storage. Research Report RJ 10356,
IBM Almaden Research Center, Aug. 2005.

[38] WU, J. C., AND BRANDT, S. A. Qos support in object-based
storage devices. In International Workshop on Storage Network
Architecture and Parall I/Os (SNAPI ’05) (St. Louis, MO, Sept.
2005), pp. 41–48.

[39] XIN, Q., MILLER, E. L., AND SCHWARZ, T. J. E. Evaluation
of distributed recovery in large-scale storage systems. In Pro-
ceedings of the 13th IEEE International Symposium on High Per-
formance Distributed Computing (HPDC) (Honolulu, HI, June
2004), pp. 172–181.

Notes
1Achieving atomicity is more complicated when writes span object

boundaries. Although the prototype does not currently address this sit-
uation, we are considering a number of potential solutions.

2We are investigating more scalable map distribution techniques
that take advantage of the version tags on OSD requests and existing
OSD chatter.

17

nijhuis2
Text Box
 This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

